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Abstract—A general and systematic procedure is developed for calculating the hydrodynamic force
and torque experienced by an arbitrarily-sized, -shaped and -oriented particle undergoing an
arbitrarily-directed translational and rotational motion inside one of two semi-infinite immiscible
fluids separated by a planar interface. The procedure is developed for the case where the ratio, X,
of particle characteristic size, a, to the particle’s characteristic distance, d, from the interface is much
smaller than unity (i.e. X «1). Situations in which the far fields in each of the two fluids are
arbitrary Stokes flow fields are also included in our analysis. Expressions derived for force and
torque are in the form of a power series in the ratio X. It is demonstrated that the general results
presented here can be easily used to derive explicit expressions for force and torque on any given
particle in terms of the fluid and flow properties, as well as certain geometrical properties of the
particle, provided the solution to a particle-dependent Fredholm-type surface integral equation is
known or obtainable.

The utility of the general results in calculating the hydrodynamic resistance of particles is
illustrated by the example of an arbitrarily-oriented ellipsoid translating and rotating in a quiescent
two-phase fluid. Applications to bodies, such as slender bodies, for which only an approximate
solution to the integral equation is available, are also briefly discussed.

1. INTRODUCTION

A particle moving in the vicinity of an interface between two immiscible fluids experiences
a force and torque which, depending on the ratio of viscosities of the two fluids, the
interface shape, particle geometry and direction of particle motion, may be higher or lower
than those experienced by the same particle in an unbounded flow. Apart from depending
on the aforementioned factors, the magnitude of the “extra” force and torque also depends
on a characteristic particle size, a, and orientation, as well as on the ratio (K =) a/d where
d is a characteristic distance of the particle from the interface. Calculation of this type of
boundary effect is essential to the understanding of many phenomena of physical and
engineering interest. Included among these phenomena are sedimentation, motion of
micro-organisms, viscometry (Brenner 1964a), Brownian motion in colloids, lateral
migration and drop or bubble flotation, to name a few.

In the recent and not-so-recent past, many research activities have been directed at
calculating the hydrodynamic resistances of spherical and other geometrically related
particles translating or rotating parallel or normal to a planar fluid-fluid or fluid-solid
interface. Exact solutions for this class of problems have been obtained (cf. Brenner 1961;
Dean & O’Neill 1963; Kunesh 1971; Schneider e al. 1973; O’Neill & Ranger 1979; Lee
& Leal 1980) using the eigenfunction method originated by Jeffery (1912, 1915). Other
exact solutions obtained by methods other than Jeffery’s eigenfunction method include
those for a circular disc straddling an interface (Ranger 1978) and an elliptic disc straddling
an interface (Falade 1982).

For K « 1, approximate expressions in the form of a power series in X for the force and
torque on a particle moving near a plane interface may be obtained by employing a regular
perturbation technique. In this connection, Brenner (1964a) used the flow field of a rotlet
singularity oriented normal to a free surface to calculate, to order K 8 the torque on an
axisymmetric body rotating near a free surface. Later, Lee et al. (1979) extended Lorentz’s
(1896) theorem for fluid motion in the presence of a plane wall to the general case of a
fluid-fluid interface (see also Aderogba & Blake 1978) and used the results to obtain
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asymptotic expressions for the resistance of a sphere translating and rotating near a fluid
interface. Lee & Leal (1980) made comparisons between the asymptotic and ‘“‘exact” values
of force and torque on a sphere. Their general finding was that agreement between the two
sets of results is good for K~' > 1.4 except in the special cases where the interface is a solid .
surface and the particle velocity vector has a non-zero component normal to the surface.
In the latter cases differences between the exact and asymptotic values of force and torque
become significant for K ' > 2.0. The extended method of Lorentz has also been employed
to calculate the force and torque on a slender cylinder translating near a planar interface
(Fulford & Blake 1983; Yang & Leal 1983, 1984).

In this paper, a procedure is given for calculating the force and torque on an
arbitrarily-sized, -shaped and -oriented particle translating and rotating near a planar
interface between two immiscible fluids. For our analysis to be valid, however, the size and
location of the particle relative to the interface must be such that K « 1. Our analysis also
allows for the case where, in the absence of the particle, the two fluids are themselves
undergoing arbitrary Stokes motion. It is assumed that, in addition to satisfying Stokes
equations, both the undisturbed and disturbance fields satisfy the condition of continuity
of velocity and tangential stresses across the interface as well as the condition of zero
normal velocity at the interface. It is further assumed that the discontinuity in normal
stress across the interface does not cause any significant deformation of the planar
interface. As shown by Lee et al. (1979), the latter assumption is reasonable if either surface
tension or gravity forces are much greater than viscous forces (i.e. Uu'/o«1 or
ga’Ap /u'U>»1, where o = interfacial tension, u'= viscosity of fluid I (see figure 1)
£ = acceleration due to gravity, Ap = density difference between the two fluids and U is
a characteristic flow velocity) or alternatively, if K« 1. The latter condition has already
been assumed in our analysis.

The method used in the development of our general results is the same as the singular
perturbation method used by Cox & Brenner (1967) to derive general expressions for the
effect of a solid wall of finite extent on the Stokes resistance of an arbitrary particle. In
the problem under consideration here, however, the boundary is an interface of a known
shape, and therefore, our results are of a less general nature than theirs. Use is also made
of the two-phase Stokeslet solution given by Aderogba & Blake (1978) and Lee et al.
(1979).

The equations governing the problem of an arbitrary particle moving slowly in the
vicinity of a planar interface are given in section 2. In section 3, the singular perturbation
procedure for calculating the force and torque to any desired order in X is described. Some
special cases which afford a reduction in the complexity of the general results of section
3 are discussed in section 4. The general results of section 3 can be used to derive explicit
expressions for the force and torque on a given particle if the solution of a particle-
dependent Fredholm-type surface integral equation is known or obtainable. To illustrate
the steps involved in the passage from general resuits to particular results, we give in
section 5 the solution for an arbitrarily-oriented triaxial ellipsoid translating or rotating
near the planar interface between two quiescent fluids. The results in section 3 can also
be applied to bodies for which only an approximate solution to the integral equation is
available. This fact is demonstrated in section 6 by the example of an arbitrarily-oriented
slender circular cylinder translating normal to an interface.

2. GOVERNING EQUATIONS

Consider an arbitrary particle B of characteristic linear dimension, a, translating and
rotating with linear and angular velocities V| and Q;, respectively, inside one of two
semi-infinite immiscible fluids (fluid I and fluid II). As in figure 1, let the interface between
the two fluids be the plane x; = 0 relative to a cartesian coordinate system (x|, x3, x;) with
origin Q lying inside the plane of the interface. Without loss of generality let B be located
in fluid I such that a point O affixed to B has the coordinates (0,0,d) (d > 0) in the
(x1, x5, x3) system. It is presumed that, in the absence of B, there would be Stokes flow
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Figure 1. A schematic sketch of the positions of point O, affixed to particle B and the interface
in the cartesian coordinate system (x|, x}, x}).

fields P!(x{, x3, x3) and P!(x{, x3, x}) in the regions x; < 0 and x} > 0, respectively. (Note
that in this paper superscripts I and II are used, wherever necessary, to distinguish between
quantities in fluids I and II, respectively.) Denote by v; and p’, respectively, the resultant
velocity and pressure fields in the fluids. In terms of characteristic fluid speed U, fluid
viscosity u', and a, the dimensionless quantities ¥, P;, Q,, v,, p and x, may be defined thus:
p. Vi Qa v; p'a x;

i U i U i U U U P ﬂlU, an X; a
If the fluids are incompressible, and Reynolds numbers based on U and a in both fluids
are small enough to justify a neglect of inertial terms in the Navier-Stoke’s equations, the
equations satisfied by v, and p in both fluids are

vi;—pi=0, off;~ipl=0, (1a,b]
and
v;,; =0, 2]

where A = u't/ul.

In [la,b] and [2] and throughout this paper, unless the contrary is explicitly stated,
Einstein’s summation convention is implied when subscripts are repeated. Also, prede-
cession of a subscript by a comma denotes differentiation with respect to the independent
variable corresponding to the subscript, i.e.

= du

T ox,
In addition to [la,b] and [2], »; and p are required to satisfy the following boundary
conditions:

vH(x), X3, 07) =0 (x), X,,07), i=1,2,3; [3a]
3(x1, X, 0%) = 0¥ (x), x,,07) = 0;- [3b]
03(x1, X5, 0%) = Ao li(x,, x,,07), j=1,2; [3¢]
v;=v;+ €, x, on the surface of B; (4]
and
v,—»V, as |r| - co. [5]
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In [3c], o is the dimensionless stress tensor which is related to v, and p by
;= —po;+ v+,

In [4], ¢ is the alternating unit tensor while, in [5],

Irl=[x?+xi+(x;— K" and K=3.
Let u, be a disturbance velocity field defined by
ul=vi- 7! and ul'=ul' =P, - 6

and ¢ be the Stokes pressure field associated with u,. Since ¥, satisfies [1a,b], [2], [3a—<]
and [5], the equations satisfied by the field (u;, g) must be:

wiy—qu=0,u;— iqli =0; [7a,b]
u,;=0; [7c]
ul(x), x5, 0) = ul(x,,x,,07), i=1,2,3; [8a]
us(x1, X3, 0%) = ull (x), x,,07) = 0; [8b]
G3,(x, X3, 0%) = A63(xy, %5, 07), j=1,2; [8¢]
u,—»0 as |r|—- oo; 9]
and

u;=v;+ €;Q;x, — V, on the surface of B. (10]

In [8c],

O'-U = _q6U+ ui,j+ uj‘,'.

If the undisturbed velocity field V,(x,, x,, x;) has no singularities in the neighbourhood of
B, then it admits of a Taylor-like power series expansion in this neighbourhood. Thus,
without loss of generality, [10] may be replaced by the condition

W =0+ 0y X + dy X X, + -, on B, [

where a;, a; and ay; etc. are a constant vector, matrix and tensor, respectively. It is also
to be noted that if the field V, has no singularity in the region occupied by B, the particle
experiences the same resistance in the field (1, ¢) as it does in the field (v;, p).

In the next section, asymptotic solutions to [7a—c]-{9] and [11] are developed using a
singular perturbation technique similar to that used by Cox & Brenner (1967).

3. DERIVATION OF GENERAL EXPRESSIONS FOR FORCE
AND TORQUE

To solve [7a—]-[9] asymptotically, we define inner and outer fields. We postulate that
the inner field has the asymptotic expansion

ul=qul+ ul+ul +--- [12a]
and
'=g'+1q' +q'+ [12b]
Each pair of (,u}, ,¢") in [12a,b] satisfies [7a—] and [11] but not [8a—] and [9].
The outer field, on the other hand, has the asymptotic representation
=+ 0+ - [13a)
and

g=g+4+ - (13b]
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for both fluids I and II. Next we define an outer independent variable %; by the relation,

X =Kx,.
In the coordinate system define by %, each pair of terms (i, ,§) in the outer field is
made to satisfy

A=K gh=0,,4—AK"' 4" =0, [14a,b]
;=0 [14c]
(B, Ry 00) = (%), %2, 07), i=1,2,3, [15a]
a3 (%, %3, 0F) = 13 (%), X5, 07) =0, [15b)
nBy (X1, %o, 0°) = 4,65(%, %,07), j=1,2 [15¢]
and
=0 as |F|— o0, F=Kr [16]

The outer interface condition satisfied by the inner field and the inner boundary
condition satisfied by the outer field are to be obtained by making both fields satisfy the
asymptotic matching conditions.

3.1. Zero-order inner field

The zero-order inner field in fluid I is determined uniquely by making it satisfy the
unbounded flow outer condition,

Ul =0 as |r|— oo, (7

in addition to satisfying [7a—] and [11]. It can be shown (Bilby et al. 1975) that

1
o = P j fi(¢1, 6, 8)2R19;— R ) do [18]
T Js

and

1
g'= “an J‘sj;(é“ 2, &) R do. [19)

In (18] and [19] 8 is the Kronecker delta and R is the distance from the point (¢,, &,, &;)
on the surface S of the particle to a general point (x,, x,, x;) in space, i.e.
R =[(x; = &) + (2 — &) + (x5 — &)).

The integral in [18] and [19] is over the surface S of B. The appropriate distribution of
forces (Stokeslets) fi(&,, &, &) over S is obtained by solving the Fredholm-type surface
integral equation,

1
o+ 0y X+ Qg X X4 0= 3 J Ji(&1, €, &3)(20,R - R;)da, [20]
s

for points (x;, x,, x;) on §. It can be shown that f] is related to the stress distribution 6,
on S due to the zero-order inner field by (Eshelby 1959)

Ji=6umy,
where n, is the unit outward normal to S. Also,

1
Uglxy, %3, %3, 6, &, &3} = g (2R7'8;,—R)

is the fundamental Stokeslet solution.
For large |7|, U; and R;' have the following Taylor series expansions:

Uj=s;— Eksij.k +3¢, Ekslj,kl +-- _ [21]
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and
Ry =1, =&t u+308tut -, [22]
where
T ==+ x4 (- KR [23a]
s5=2t8;—(t7") [23b]
and .
Li=8— 0K [23¢]
In [21] and [22], we have made use of the fact that at |r’| =0,
W Wi e 0= (=1 Ghntps T r..p)- [24]

In [24}, |r’| is distance from O to a point (£, &,, &)), i.e. |r’|2 = £ £, Substituting [21] and
[22] into [18] and [19], we have,

othi = A;Sy+ ApSyu + ApSija+ [25]
and
ofi = 2(A;t j+ Apt o+ At ju + ), [26]
where
Aj=-—1-— J.fjda,A,‘= -1 fffkda
8n Js ’ 8n Js/
and

1
Ajkl = ‘l‘g;[ Lf,fkfl do. (27]

Note that A, A,, A, etc. depend upon the shape, size and orientation of B. They also
depend linearly on the velocity vector on B through [20]. In view of this it is possible to
write A;, Ay, Ay, etc. in the form

A;j=0,Cy+ oy Cji + 04y Cpy + - -, [28a]

Ay = 0; Dy + 0y Dy + 0y D + [28b]

Ay = 4Gy + iy Gy + Uiy Gmgis + * + - €1C. [28c]
When expressed in the outer variables {25] and [26] now become

oy = KAS;+ K2 ApS8, + K2 Ay $0+ - [29a)
and

% = 24,1+ KAuL o+ K2 Ap B ju+ -+ ), (29b]

respectively; where §; and 7; are defined by [23a—] with 7 and K replaced r and 1,
respectively, while all the differential operations indicated in [29a,b] are to be done with
respect to the outer independent variables.

3.2. The first-order outer field

The first-order outer field (yu;, o§) satisfies [14a—c}-[16]. In addition, it is constrained to
have the same form as [29a,b] in its inner region (r — 0) in order that the asymptotic
matching conditions have a chance of being satisfied.
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To construct this outer field, define the auxillary field (¥, ,§*) by

g _wa* o

K"k %

The general two-phase Stokeslet solutions due to Aderogba & Blake (1978) and Lee et al.

(1979) are then used to determine the functional form of ,ii¥*, ,§*, ,#" and ,§". Hence we
have,

¥ =gy + (1 — TRty + Z3By ol ) [30]
and .
gt = + 1)(By ot + X303 — %xgoai.kk)' 31

In [30] and [31],
Fr=0-0)A+A)"J;=Té;—(I' +1),0;,
B;=06;~20,0;, and i(x;, x;, —X;).

Preparatory to obtaining the solutions to the equations of the first-order inner fields,
we expand ,i#¥ in a Taylor series expansion about O for small values of r. The resulting
expansion is

0¥ = K{,E+ \EpZp+ | Egpn R X+ -}, [32]
where
\E;= APy + KAy P+ K2 Ay P+ -+, [33a]
Epn= AP+ KAy B+, [33b)
1Eimn = A; Py + KAy Py + -+ - etc. (33c]
and

Xm = .fm e 6m3'

The coefficients of 4;, 4, etc. in [33a—] are given by

Py= ﬁjp‘lpi + %(1 - F)(ZﬂjJi + ﬂjplpri)’ [34a]
Py =[Bimd i + 5(1 ~ (2B + By B,i)) Bk [34b]
P =B +3(1 =T 2B 3im + O3 Bisi) + (Bipiim + 20,3 Biut) By, [34¢]

P sim = {Bjpmnpi + Wa-r N2(Bjsimn + Oms Biin) + (Bipttm + 203 Bpt) B,]} B, etc.  [34d]
In [34a—d],
BJ'P = .}P(O’ 0’ - 1) and ﬂjpklm. = jp,klm...r(O’ 0’ - 1)

Explicit expressions for some of the fs are

8,4+ 96,30
ﬁjp=_fz_213_ﬁé, [35a]

0430, + By;0,3 + Budyy + 36;30,301 [35b]
Biok = ]

and '
‘5“5!-’, -+ Bjk Bpl <+ 'Bpkle + 3 (6k3 513 6”, + 6[3 6‘,3 Bjk
+ 8303 By + 0430,3 B+ 0303 B — 6;30,3041) + 15030,34 Op

Bk = 8 [35¢]
In terms of the inner variables [32] takes the form
i = K\E;+ K* E %, + K> \Eppp Xp Xy + 7, [36]

where X, = x,— ;.
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3.3. First-order inner field

Apart from satisfying Stokes equations [7a—], the first order inner field (;«;, ,¢) should
also satisfy the boundary conditions

;=0 onB [37a]
and

;- 4= K E,+ K*\E, %, + K*E,,%,%,+ - as|r| - oo. [37b]
The last condition [37b] ensures that the inner and outer first-order fields are properly
matched to the first order in XK.
Writing

= U} + KGE+ K\Ejp X+ K \Ejpy %y %+ -+ *),
it is easy to see that ,u} satisfies the boundary conditions

wu*=—K(,E+K\E, %, + K* E,,,%,%,+-) onB
and

wmr=0as|r| - .

Following the procedure used in subsection 3.1 for constructing the zero-order inner field
(o4;, o), it is straightforward to show that ,u* has the outer expansion (in the inner
variables)

¥ =KGA;s;+ 1 ApSpi + 1 ASi+ ), (38]
as |r| - oo.
Here,
1A;=(EC;j+ K\E,, Cppj + K* | E;pyp Coy + - *), [39a]
1A = GEDy + K\Epy Dy + K* | Ejppy D+ +*) €tC. [39b]

Expressed in the inner variables, [38] has the form

k= KA+ K Ay S0+ K2 ApaSya+ ).

3.4. Second-order outer field

We seek, as the second-order outer field, the pair (,iZ;, ,§), which has the same behaviour
as qu¥ as |r| - 0 and which satisfies [14a—c}-{16]. Following the procedure of subsection
3.2, we define the auxillary field, ,u*, by

A} =¥ + i
A repetition of the analyses given in subsection 3.2 immediately leads to
Mr=Jur+ (- r)(fslﬁ;i*'%i%lﬁ;kk&j) [40]
and
M= (T + DBy} + Xy uf;~ 3% ul)- [41]
In terms of the inner variables, ,u* has the Taylor series expansion
¥ = K GE + K EpZom + K E %y Xy + - *),

as || = o. The expressions for ,E,, ,E,,, ;E.m, €tc. are obtained by using [39a, b} with
A;, Ay, Ay etc. replaced by (A4, | Ay, Ay €tc.

3.5. Second-order inner field

Repeating the analysis of subsection 3.3 for this field, we obtain the following expansion
for the second-order velocity ,u; as |r| = oo
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;= K2GE, + KyE i R+ K2 E g % X+ -+ ) + K2 (A5 + WSt 2AwSju+ )

where ZAj = (zE,-C,-j"I' KZEIkau+ . ) and 2Ajk = (2EiDijk + KZEuDlijk + - )
The procedure described in subsections 3.1-3.5 may be repeated ad infinitum.

3.6. Force and torque on the particle

The force and torque on the particle is obtained by applying the generalized Faxen’s
laws given by Brenner (1964b) to the inner fields. For the dimensionless force F; and torque
T, (non-dimensionalized with respect to u'Ua and p'U a%, respectively), we have the series
(ordered in K)

F=8n[4,— KA PyCyj+ KX (A PyCin PryCrj — At Piyns Croiy — At PeniCy)
— KA Py CyiPin Cray Poy Coy+ A Priy Comi + A e Py Coniy + At PGy
— A4 Py Dt Pini €y — A Piy Cop Py Cri
— At Pirun Comg Pt C A Py Cong oo ) + O (K4 [42)
and
T;=8meulAu~ KA, PyDy+ K*(Ay Py Com Py Dyt — Ay P D i ~ Agn Pog D)
—K*(A,P,,C,,PyCp Py Do + Agn Prt Dimic + Ay Pty Dt + Aot Piang D gic
— AP, Cry Py Dy — Ay P Doy Poi Dyt — Ay By Clo Py D i
— APt Co P o D i) + O(K*)). [43]

Note that 4, 4, Ay,....C;j, Ci,... are all vectors and tensors which are determinable
from the solution of the unbounded flow integral equation [20] and [27] and [28a—<]. On
the other hand, P;, P,,...,P,,... and By,... depend on the ratio of viscosities for the
planar interface problems under consideration here. From the structure of [42] and [43],
it is obvious that, to calculate the force and torque on the particle to order K*(n > 2), it
is in general necessary to obtain a solution to [20] for the particle when it is immersed in
an unbounded flow field whose velocity distribution is a polynomial of degree n — 1.

4. SOME SPECIAL CASES

In this section, we consider some interesting cases for which [42] and [43] reduce to more
degenerate forms.
4.1. Pure translation in a quiescent fluid

If fluids I and II are at rest at infinity and if the particle translates without rotating in
fluid T with velocity U,, then in [11]

o=U, ay=ou=""=ay...r=0
Under these circumstances,
A;=UC;
where, as shown by Brenner (1962), C; is a symmetric tensor. Also,
Ay =UDy, Ay=UDy, etc.

If the particle under consideration is orthotropic (e.g. an ellipsoid, a rectangular
parallelepiped or any polyhedron), or if it possesses any form of axial symmetry, it may
be deduced (Brenner 1964c) that provided O coincides with the centre of reaction of the
particle

A ik = 0 [443]
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Also,
Cy=0=Dy. [44b]

L

since the particle would experience neither a torque when translating in an infinite fluid
nor a force when rotating in same. For orthotropic bodies, O then is the point of
intersection of the three mutually perpendicular planes of symmetry while for non-
orthotropic bodies of revolution O lies somewhere on the axis of symmetry.

It is obvious from [34a] and [35a—] that P, is a diagonal matrix, i.e.

P;,=46,;0; (no sum). ' [45]

For the class of bodies under discussion here, C; is also a diagonal matrix provided the
body is oriented such that its planes or axes of symmetry coincide with coordinate planes
or axes, respectively, i.e.

C;=96,Z; (no sum on j). (46]

The consequence of [44a, b]-[46] is that for these special orientations, [42] and {43) reduce,
respectively, to

8nA;

F = J 47a

7 (1+gK+dK*)+O(K*) (47a]
and

8n K3,

T, = 4 ), 47b

= AT eK)+ oKy Mosumon)) [470]
where

g=0;Z
and

4= (A Prsnn Coms + At Pini C) [48a]

%"

bj= - jikAnanlDlmik [48b]

and
AP -
ej=—q—;’"—ci"1 (no sum on j). [48c]

7
The resuit in [47a,b] and [48a—] may be shown to hold true for any interface shape
which is symmetrical about an axis through O provided the orthotropic or axisymmetric
body possesses fore- and aft-symmetry about this axis. However, for non-planar interfaces
which satisfy this symmetry condition, expressions for P;, Py etc. would be different from
those given in [34a-—d)].
For a sphere, simple calculations show that

3U,
Z,=; and A4,= 7({! [49a]
2-132
- ' 49b
01D for j #3 [49b]
o= @2+ 34)
-2+ .
EREY forj=3 [49¢]
and
€k Dy = %5,7"1- [49d]
The only non-zero elements of the tensor B, are (from [34c] and [35a~])

2+ 34

F232=1313|=%P333=—P322=—F3n=m
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and
34-2
P223=P113=m-
It follows immediately from [48a—] and [49a—d] that
3 2-32 .
76157 for j #3
g= [50)
_—_3 2+ 34 P _ )
8 1+4 /=
and
j= —41!6,,,,A,P,,,,,,=%1[(1 +A)—1(U|6j| - U25]'2)' [51]

Equations [50] and [51] are in complete agreement with the corresponding results of Lee
et al. (1979). Calculation of d; requires the determination of C,; which in turn requires
that [20] be solved for the case where the disturbance velocity has the distribution

U = 0 X X
For a sphere, it can be shown that (Brenner 1966)
Cinm = £6;0m-
For sphere motion parallel to the interface along the x,-axis, say,
d;= (P13 Coany + Prinn ooy + Byt Cony + Ay Puayy + Ain Py + Ai33P3311) 9,

where

2474
Py, = 2Pnn =m,

SA -2
Py = 2Pnzz =m,

1-1
Py, =2pms=m

and
Pyyyy = 2p3333 = “%’
and A, has the same numerical value as }4,,. It therefore follows that
QA + 1)(6;, + 9,5) 3(2—-34)6, + 6,)
d= J = J 27
4 ea+n @ 16(1 + 4)
For motion normal to the interface,
d= (P1333Cosss + Prsy Cozgy + By Ciigs + Asys Pagsy + Asgy Py + Ay P, 3)é5
_ -3
81+ A))0;

It is not necessary to calculate ¢, for this case because the numerator of T; in [47b)] is zero.
The results in [52a—] represent an extension, to third order in K, of the corresponding
results given in Lee et al. (1979).

[52a,b)

[52¢]

4.2. Pure rotation in a quiescent fluid
If the particle is rotating with angular velocity w, in a two-phase fluid which is at rest
at infinity, then
Oy = €gyWi, Qe =+ - =0y, =0, (53]
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Also,
A; = €y W Cpijy A = €4y W, Dy etc.

For an orthotropic or axially symmetric body oriented such that its planes or axes of.
symmetry are parallel to coordinate planes or axeés, respectively, we have in addition to
[44b], [45] and [46], that if O and the centre of reaction coincide,

A;=0= A, [54]
As a consequence of these symmetry properties, [42] and [43] reduce to
Fi= —81K* (A, PppiCyj+ KAy Py Coe Prg Cy) + O(KY) [55]
and
T, = 8neu(Au — K° Ay Py Do) + O(K?). [56]

{w|a has been selected as the characteristic speed, where |w | is understood to mean the
magnitude of the angular velocity [i.e. [w| = (w,w,)"?] and a is the sphere radius. To prevent
the body from translating, a force F; must be exerted on it.

For a spherical particle it can be shown that

ine,,w,
- SHA"qPqniCij = Lﬁl— [578]
and
6, (F—2)Y,
8reu (Au — K’A,,q Pq,,,,,,D,,,,,-k) =8n |:W,, —1+r % + L“%—ﬂ] [57b]

In [57a,b],
w’l
(wi]’

Ynj = 5'lj - 6"3 6]3 and W,, =

These results are in accord with the corresponding ones given by Lee et al. (1979).

5. MOTION OF AN ARBITRARILY-ORIENTED ELLIPSOID

In this section, the utility of the general expressions ([42] and [43]) given in section 3
is demonstrated by calculating the force and torque on an arbitrarily-oriented ellipsoid
translating and rotating in a two-phase fluid.

Consider an ellipsoidal particle with semi-axes of lengths 4,, 4, and 4,. Let the particle
be momentarily positioned in fluid I such that its centre, O, is at (0, 0, d)(d > 0) relative
to a cartesian coordinate system (x,, x,, x;) whose origin, Q, is on the planar interface (see
Figure 2). The interface is the plane x; = 0 in this coordinate system. The orientations of
the x,- and x,-axes are such that the x,-axis is parallel to the g,-semi-axis of the ellipsoid
while the x,- and x;-axes make an arbitrary angle 8 with the ellipsoid’s 4,- and a;-semi-axes,
respectively, in the counter-clockwise direction. Thus, if (e}, e3, e;) and (e,, e,, e,) are two
right-handed triads of orthonormal vectors lying, one along the principal axes of the
ellipsoid and the other along the (x,, x,, x;) coordinate axes, respectively, then the nine
direction cosines are given by

1 0 0
M,=e-e,=|0 cosf —sinb|.
0 sinf cos@

Let us assume that the particle translates with an arbitrary velocity U, and, at the same
time, rotates about an arbitrary axis through O with angular speed w,. By virtue of the
linearity of the governing equations and boundary conditions, the resistance of the particle
while performing this general motion may be determined by appropriately superposing the
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Fiuid I

gy A3

a.
Ellipsoid §

Figure 2. A schematic sketch of the positions of the arbitrarily-oriented ellipsoid and the interface
in the cartesian coordinate systems (x;, x,, x;) and (x], x3, x3). The two coordinate systems are
related by x, = M x/.

resistance of the particle for the six independent cases in each of which either the particle’s
direction of translational motion or its axis of rotation is parallel to one of the three
coordinate axes. In the rest of this section, we determine, to at least order K, the force
and torque on the particle in each of these six cases. Without loss of generality, we select
a, as the characteristic length of the problem with respect to which all other lengths are
non-dimensionalized. Also, K = &,/d.

S.1. Particle motion parallel to the interface along the x raxis
If the particle is moved parallel to the x,-axis with dimensional speed U,, then

o =0y,

where we have non-dimensionalized velocities with respect to U, as the characteristic speed.

From [42], it is evident that the calculation, to order K>, of the particle drag requires
the determination of only A4,, C,, and P,, since, by virtue of the orthotropicity of the
particle, [44a,b] apply. The Stokeslet distribution f; that satisfies [20] can be deduced from
the results of Dyson (1891) and Eshelby (1959) to be

f;‘ = €o-]j“if.{51|» [58]
where
€=4(aa), J,=(,+a*I)"" (no sum on i),
10=J°°A(w)dw, I.~=L°° (@ +y)" AG) dy
0
and

AW) =@ +¥)ai+y)1 +y)-'~

In [58], m, is the outward unit normal to the ellipsoidal surface and (&1, &5, §3) are the
coordinates of a point on the particle surface in the system defined by the orthonormal
triad (e}, ej, e3) lying along the principal axes of the ellipsoid. Also, a, =4,/a, and
a, = a,/a,.

From [58), it follows that
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and, therefore,
C,=2,. [59b]
From [34a] and [35a—], P, is determined to be the diagonal matrix given by

_ %[(5.‘1' —0,30;3)(2—34) - 26,,0,5(2 + 34)]

= 60
Py 1+4 [60]

Applying [42], [43] and [59a], we obtain the components of the force, F;(j =1, 2, 3), and
torque, T, acting on the particle as :

F, = 8nu'ad,U,(Fy,o + KF,;; + K*F,;;) + O(K?), fé1]
F,=F,=0,
T, =0,
T,= —8nu'aU,K2T,, + O(K?) [62a]
and
T, = 87u'@U, KT,y + O(K?), (62b]
where
Fo=A4,, F,=—~AP,C,, Fy,=A4,/(P,Cy),
Ty = A, P ;;(Dy13) — Dyyy3) + A, Py (Dysy, — Disis)
and
Ty = A, P\ ;;(Dsy1; — Dyyyy) + A, Py (D31, — Diyy).
Here,
Dy = —1ai(b, cos’ 6 + b, sin’ §), [63a]
Dy13 = —%(a3bycos’ 6 + a3b, sin’ §), [63b]
D\3y = —%a}(bscos? § + bgsin® 8), [63c)
D,y = —%(a3b, cos? 6 + albgsin? 9), [63d]
Dy = —2a?(b, — b,)sin 6 cos 6, [63¢]
Dy, = —3(a3b, — alb,)sin G cos 6, [63f]
D3y = —2al(bg ~ bs)sin 8 cos 6, [63g]
D\, = —3(aibs — a3b,)sin 6 cos 6, [63h]
Piy= Py = %‘_:_j) [64a]
and
Pry= Py = 32(—12“7) [64b]

In [63a-h], b,,b,,...,b; are constants whose values depend on the ratio a,:a,:1. The
computed values of these constants for three different ratios a,:a,:1, namely 0.5:0.4:1
(case I), 0.5:0.6:1 (case II) and 0.5:0.8:1 (case III), are displayed in table 1.

From [61], it is seen that, to order K°, F, is independent of the orientation angle, 6.
However, higher-order terms introduce 8-dependence into F,. In figures 3a and 3b, are
plotted the variation of F;, and F},, with the viscosity ratio, 4. In figure 3a, it is seen that
F,, is negative- or positive-valued according to whether 4 is less or greater than . As can
be observed from figure 3b, F),, like F),,, is positive-valued for all . A consequence of
these observations is that, for 2 < 3, the force experienced by the particle in two-phase flow
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Table |. Values of the constants b,, b,, ..., bs for case I
(a,:a,:1 =0.5:04:1), case Il (a,:a,:1 =0.5:0.6:1) and case

I (a,:a,:1 =0.5:08:1)

Constants for Case Case Case

the ellipsoids 1 I I
b, 0.6735 0.8240 0.9139
b, 0.6877 1.0370 1.0360
b, 0.0616 0.0819 0.0591
b, 0.1457 0.2880 0.1517
by 0.2462 0.3210 0.3265
b, 0.0931 0.4200 0.3886
b, 0.4795 0.5484 0.6468
b 0.7402 0.9100 0.8003

is lower than that experienced in unbounded flow. Also, both F,;, and F,,, increase in
magnitude as the particle size (volume) increases.

The qualitative dependence of T, on 8 is shown in figure 4 for L =0, 1 =1 and 1 = 0.
It is shown that T, increases in magnitude as particle size increases for any given pair of
0 and A. The rate of change of T, with respect to # is also observed to be greatest for the
smallest particle (case I) for a given value of A. It is to be noted that, for A =0, T} is positive

{a)

08

Q2

-04

Viscosity ratio,

Figure 3a. First-order component, F},,, of the dimensionless drag force as a function of the viscosity
ratio, 4, for an ellipsoid translating parallel to the x,-axis: ———, case I (a,:4,:1=0.5:04:1);
——, case II (@,:a,:1=0.5:0.6:1); -- x--, case 11l (gq;:a,:1=0.5:08:1).

o020 (b)

0.6

004

0.00

Viscosity ratio, \

Figure 3b. $econd-order component, F,,,, of the dimensionless drag force as a function of the
viscosity ratio, 4, for an ellipsoid translating parallel to the x,-axis: ~——, case I; ——, case II; -- x -,

case III.
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Az 0

Figure 4. Dimensionless torque, 3T, [or force 3F,/(16nu'w,a3Kk?)}, as a function of orientation
angle, @ for an ellipsoid translating parallel to the x;-axis (or rotating with angular velocity w,e,):
—~—-—, case I; —— case II; -- x --, case IIL

while, for A = 1 and A = oo, the torque is negative. Figure 5 shows the variation of torque,
T,, with 8 for A =0, A =1 and A = oo for all three cases. The direction of the torque for
A =0 is again opposite to that for 1 =1 and 4 = 0. It is also worth noting that the
magnitude of T; is about one order of magnitude less than that of T, for a given pair of
A and 0, and that T, decreases as the particle size (volume) increases.

5.2. Particle motion parallel to the interface along the x,-axis
Next we calculate, to order K, the resistance of the ellipsoidal particle when it is moved
parallel to the x,-axis with dimensional speed U,. We select U, as the characteristic speed

003
0.02
001
o
X
e
Pl ¢ —
L2} X
» 000 > 60° ~ 120° 150°
2 2 \Orcentotion angle, 8
o
o
vm
W —go1
[N
-002

-003%
Figure 5. Dimensionless torque, 27T,; [or force 3F,/(16nu'w,a3Kk?)}, as a function of orientation
angle, 6 for an ellipsoid translating parallel to the x;-axis (or rotating with angular velocity wye, ).
-——, case I; ——, case II, -- x --, case III.
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of the flow field. We then have

o= 6‘-2.

In this case, the Stokeslet distribution f; is given by

Ji=6{[(Jc08? 8 + Jysin? )6, + (J, — J;) sin 6 cos 6,5]} m;& ;.

From [65], it follows that

and

A;=2[(J,cos? 8 + J;sin* 0) 8, + (J, — J3) sin 0 cos 8353,
C,, = 2(J,cos? 8 + J;sin? )

C23 = 2(J2 - Jg) Cos 9 Sin 0.

Since, as previously pointed out, C; is symmetric, we have

Cy=Cy and C=C,=Cy=C;3=0.

823

[65]

It may also be deduced from the unbounded flow solution in the case when the particle
translates parallel to the x,-axis that,

Ci; = 2(J;¢c08* 8 + J, sin? 6).

From [42] and [43], we obtain the following expressions for the force, F;, and the torque,
T;, acting on the particle:

F, =0,

F, = 8ny'a;,U,(Fpo + K Fyyy + K* Fry) + O(K),

Fy = 8nu'a,U,(Fio + KFyy + K* Fi) + O(K),

T,= —877"#]5%[]2{442[15 132(D3zs — Dasa) + Py (Dizyy — Do)
+ A3[Py1 1 (Dyups — Dun) + Pyyp(Dagy — Do)
+ Pyy3(Dyyy — Dygp)l} K* + O(K)

[66a])
[66b]
[66¢]

[66d]

[66¢]

[67a,b]
[67c]
{67d,e]
[671]
[68]

[69a]

and
T,=T,=0.
In [66a—€],
F220=A2’ F221 = —(A2P22C22+A3P33C32)
F222 = A2P22(C22 P22 C22 + C23 P33 C32) + A3P33(C32P22 C22 + C33 P33 CJZ)’
Fyg=A;, Fy = —(4,PnCy+ A3 P13 Cyy),
F232 = A2P22(C22P22 C23 + C23P33 C33) + A3P33(C32P22 C23 + C33 P33 C33)9
P333 = —2}5322 = —2P3n = :%ﬁ’
D353 — Dygyy = Ha3(d, sin? 6 + d, cos? 8) + a3(d, sin’ 6 + d, cos? 9)),
Dyyyy — Dy = —3ad(d, cos? 8 +d, sin? ) + a3(d;cos’ 6 + d,sin?9)],  [69b]
and '

(Dy123 — Dyi3z) + (Dazgy = Dyz) = 2(Diayy — Dyzyy) = 3(a3ds + ajdg) cos 6 sin 6. [69c]

The constants d,, d,, ...,d, appearing in [69a—] depend on the ratio a,:a,: 1. The computed
values of these constants for cases I, II and III are displayed in table 2. The grouping of
terms on the Lh.s. of [69a—] is guided by the combinations in which these terms appear
in [66d].
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Table 2. Values of the constants d,,d,, ..., d, for cases I, II

and 111
Constants for Case Case Case
the ellipsoids I 11 11
d, 0.0450 0.0720 0.1112
d, —0.4832 —0.5404 —0.6088
d; —0.7197 —0.6685 —0.6175
d, 0.2814 0.2044 0.1738
d —1.5846 —1.8372 -2.160
dg 3.0033 2.6187 2.5359

In figures 6a—6¢ are shown the qualitative variations with 8 of Fy, Fyp, and Fy,,
respectively, for 4 =0, 1 =1 and A = oo. It is observed in figures 6a—6c that the zero-, first-
and second-order components of F, all increase in magnitude as particle size (volume)
increases (with the exception of F,,, for case III, A = 1) for a given pair of 8 and 4. The
rate of variation of these ordered components with the orientation angle 8 is found to be
greatest for the smallest particle. For 4 = 0, F,, is negative-valued for all orientations and
all three particles. With the exception of this latter case, all the other quantities plotted
in figures 6a—6c¢ are positive-valued. From this observation, it is concluded that, regardless
of particle size and orientation, the effect of a free surface is to decrease the drag on a
particle relative to the corresponding unbounded fluid drag when the direction of particle
motion is parallel to the interface. For 4 =1 and 1 = oo, the drag is increased over its
unbounded fluid value. It should also be noted that, with the exception of Fy, for 1 =1,
all the ordered components of F, increase monotonically in value in the range 0° < § < 90°
and decrease monotonically in the range 90° < 8 < 180°.

Figures 7a-7c show the variation of Fyy,, F,,, and F,y, with@for 4 =0,41 =1 and 1 = 0.
It is seen from these figures that in contrast to those of F;, the ordered components of
F; increase in magnitude as particle size decreases for any given pair of 4 and 6, except
at 6 =0° 6 =90° and 6 = 180° where all components are zero-valued. All components
have same sign at any given value of 6 and have their largest magnitudes at a value of
6 which is slightly less than 45° or slightly greater than 135°.

As can be seen in figure 8, where 37, /16muU,43 is plotted against 8, T, is negative-valued

0020
0.015
0010

0005

Y 0000
-l
H
kﬁ -0005
-y
-0.010
-0.015
-0020L
Figure 7a. Zero-order component, Fyy,, (OF F;y) of the normal force as a function of the orientation
angle 0 for an ellipsoid translating parallel to the x,-axis (or x,-axis): ——-, case I; ——, case II;

-- x --, case III.

MF 125—H
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Figure 7b. First-order component, F,;;, (or Fy,,) of the normal force as a function of the orientation
angle 8 for an ellipsoid translating parallel to the x,-axis (or x;-axis): ———, case I; —, case 1I;
-- % --, case ITI.
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Figure 7c. Second-order component, Fy,, of the normal force as a function of the orientation angle,
6 for for an ellipsoid translating parallel to the x,-axis (or x;-axis): ——-, case I, ——, case II; -- x --,
case III.
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Figure 8. Dimensionless torque, 3T,/(16au'U,a3K?) [or force 3F,/(16nu'w,a2K?)], as a function
of the orientation angle 8 for an ellipsoid translating parallel to the x,-axis (or rotating with angular
velocity w,e|): ——-, case I, ——, case II; -- x --, case III.

for all three ellipsoids and all orientations when Z=0. Thus, if the particle were
unconstrained, it would rotate in such a direction that the orientation angle 8 is increased.
It is also revealed in figure 8 that, for A = 0, the torque depends weakly on 6 over the range
60° < 8 < 120° for an ellipsoid.

For 4 = o, the torque, T, on the three ellipsoids acts in a direction opposite to that
for A =0 when 6 <6, or 8 > 180 — 6,, where 0, depends on the ratio a,:a,: 1. For the three
ellipsoids the largest positive torque occurs for 8 = 0°, while the largest negative torque
occurs for 8 = 90°. Again, the rate of change of T, with respect to 6 is greatest for the
smallest particle. Figure 8 also suggests that for a sufficiently “slender” ellipsoid
(a; > a,, a; > a;) a change in the sign of the torque may be obtained as the orientation
angle 6 changes from 0° to 90° (or from 90° to 180°), provided the order of magnitude
of Ais =1.

5.3. Motion normal to the interface

In this case, the ellipsoid is presumed to be moving perpendicular to the interface with
the speed U;. Choosing U; as the characteristic speed, we have

o= 5,-3.
For this case, we also have
Ji = &l(J5c08? 8 + J,sin* 6) 65 + (J, — J;) sin 8 cos 8 5,,]m ] [70]

and
A;=2[(J> — J;)cos 0 sin 6 §;, + (J; cos? 0 + J,sin’ 6) ;3] [71]
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The force, F;, and torque, Tj, acting on the particle may be expressed as
F, =0, F,=8np'a;Us(Fo+ KFs + K?Fy) + O(K?), [72a,b)
F, = 8np'aUs (Fy3o + KFsyy + K*Fap) + oK% [72c]
and ’
T, = —8nu'a,Us{Ay[Prz(Dass — D) + Proy(Dims — Dizp)] + A3 [Py (Drizy — Duizs)
+ Pyyy(Dysy — D) + Py (Dyss — D))} K* + O(K7). [72d]

Expressions for Fyq, Fiy, Fi, Fig, Fiay and Fi, are, respectively, given by the r.h.s. of
[67a—f]. Note, however, that the operative definitions of A, and 4, in this section are those
given by [71]. The expressions for Fiy, F3 and F;,, turn out to be identical to those for
Fys, Fp3 and Fyy, respectively, to order K 3, The qualitative variations of Fy;, Fyy and Fiy
with @ for the three ellipsoids and for 4 =0, A =1and A = oo are plotted in figures 9a-9c.
From these figures we deduce that the three ordered components of F; are all positive and
they increase as particle size increases for any given pair of 4 and 6. For any given 4, the
rate of change of each of the three ordered components with 6 decreases with particle size.

As can be seen from figure 10, the magnitude of 7 increases with particle size for a given
pair of 4 and 6, except at § = 0° and 8 = 180° when T, =0. Figure 10 also suggests that
T, also increases with 4 for a given particle size and orientation angle 0.
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Figure 10. Dimensionless torque, 3T, /(16mu'U,a%K?) [or force 3F,/(167.tu'w,6§1( 2)}, as a function
of the orientation angle 8 for an ellipsoid translating parallel to the x;-axis (or rotating with angular
velocity w,e,): ——, case I; ——, case If; -- x --, case IIL
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5.4. Rotation about an axis parallel to the x,-axis
Next we consider an ellipsoid rotating with angular speed w, about the axis through O,
which is parallel to the x;-axis. Selecting w,a; as the characteristic speed of the flow field,
we have
;=1 and o, = —1.
Also,
A=0 (j=123),

while the only non-zero components of 4, are given by
Ay =—3(d,+d;) and Ay, =¥d,+d,),

where d,, d,,...,d; are given in table 2.
From [43], we have for the torque T; on the particle,

T, = —8nu'aj(T),,+ K’T),,) + O(K?) [73]
and T, = T, =0, where
Ty o= Ay — Ax, [74a]

Ty = (A5 Prigy + A3 Piyyy)(Digy — Diyyg) + (Any Prsy + Ay Prysy)(Dyayy — Digzy),  [74b)]
P2323 = le = Pam = Pms = %a

1—2i 5 5 2454
41+ 4)

The non-zero components, F, and F;, of the force experienced by the particle are obtained
to order K> by, respectively, multiplying the r.h.s. of [66e] by w,/U, and the r.h.s. of [72d]
by w,/U;. It is obvious from [74a] that the zero-order torque, T,;,, does not depend on
0. The third-order component of T,, however, depends on @ in the manner shown
qualitatively in figure 11. For all three ellipsoids and all values of A and 6 plotted, we
observe that T, is positive, implying that the presence of an interface causes an increase
in the torque relative to its value for the particle in an infinite fluid. It is also to be noted
that for given values of 4 and 6, the magnitude of T,,, increases with particle size.

P3223=P3m=

[74c]

Orientation angle, &
o} 30° 60° 90° 120° 150° 180°

-002

—-006

-0.10

-014

437—\11

—~018

-022

-026

—o.zak

Figure 11. Dimensionless third-order torque, T, as a function of the orientation angle 8 for an
ellipsoid rotating with angular velocity w,e;: ——-, case I, ——, case II; -- x --, case III.
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5.5. Rotation about an axis parallel to the x,-axis

Here, w,a, is selected as the characteristic speed of flow, where w, is the angular speed
of particle rotation about the axis through O which is parallel to the x,-axis. The only
non-zero elements of «; in this situation are

a‘3= 1 and a3| = —1
We deduce from [43] that
T, = —~8np'w,d3(To + K’Ty) + O(K*) [75a]
and .
Ty= ~8nu'w,a}(Tyo + K> Ty)) + O(K?). [75b]
Here,
Tpo=Ay3— Az, Tyo=An~ 4u, [76a,b]

Ty = —(Ay3 Py + A3 Py Y(Disis — Dysat) — (A3 Payy + Asy Pryy3) (D3 — D), [76¢)
Toyy = (A Pryy + A1y Py 1))(Dyyyy — Do) + (Az Proyy + A Py )(Dypia — Digy) - [76d]

Ay =Dy 3 — Dy3y3, A3y = Dayyy — Dy, [77a,b]

Ay = Dyzy — Dizg1, Ay = D3y — Dy, [77¢,d]
D\, = —%(bsa, cos? 0 + byalsin? §), [78a]
Dy, = —3(bgal cos? 6 + b,alsin? ), [78b)
D\yy = —%a(b,cos’ 6 + b, sin? 9), [78¢]
D5 = —%al(bcos? 6 + b sin? §), [78d)
Pon=Pun =232 and Py = Ppy=—n? [79a,b]

16(1 + 1) 16(1+4)

All other terms appearing in [75a,b] have been previously defined.

The expression for the only non-zero component, F,, of force is obtained, to order K3,
by multiplying the r.h.s. {62a] by w,/U;,.

The qualitative variations of Ty, and T, with 8 are displayed in figures 12a and 12b,
while those of T,y and Ty, are displayed in figures 13a and 13b. It is seen from figures
12a and 13a that T, increases and T»;, decreases as the particle size increases for any given
value 6. Figure 12b shows that T, is positive for all values of 8 and A plotted but figure
13b shows that the sign of T, for 4 =0 is opposite that for A =1 or 1 = cc at any
orientation angle 8.

5.6. Rotation about an axis normal to the interface

Consider next the rotation of the ellipsoidal particle about the axis through O which
is normal to the interface. The characteristic velocity is chosen to be w,4; in this case. Thus,
the only non-zero components of «; are

0y = 1 and Ay = — 1.

The expressions for T, and T, are as given in [75a,b], [76a—d], [78a—d] and [79a,b] (with
w, replaced by w,) except that now A,,, 4,,, 4; and A, are given by

Ay =Dy — Dy, Ap=Dyy— Dy, [80a, b}
A3 =Dy —Dyy and A3 = Dyy3— Dy [80c,d]

The zero-order component of T is equal to T,y of [76a]. The latter has been plotted in
figure 13a. The zero- and third-order components of T; are plotted as functions of 6 in
figures 14a and 14b. It is shown in these figures that the magnitude of the ordered
components of T, for any given pair, A and 0, increases as does the particle size. However,
the sign of Ty, the third-order component of T for 4 =0 is opposite that for 4 =1 or
4 = oo for a given value of 8. Moreover, as shown in figure 15, Ty, the third-order
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Figure 12a. Dimensionless zero-order torque, Ty, as Figure 12b. Dimensionless third-order torque, T5,,,
a function of the orientation angle 8 for an ellipsoid as a function of the orientation angle 0 for an
rotating with angular velocity w,e,: -——, case [; ——, ellipsoid rotating with angular velocity w,e,: ———,
case II; -- x --, case III. case I; —, case II; -- x --, case II.

component of 7, has the same sign for all values of 4 and 6 plotted. The only non-zero
component F,, of the force is obtained by multiplying the r.h.s. of [62b] by w,/U,.

6. APPLICATION TO SLENDER BODIES

The analysis of section 3 can be applied to slender bodies or other bodies for which the
solution to [20] is known only approximately. For a slender body, whose half-length is /,
appropriate forms of [20] and [27] are

&+ ax; + XX+ = J‘i[fj(él, &, &)Q0;R™' — R ) dp, [81]
06 () 16 (b)
012
a0s

004

X
5 000

-004

-008

-012

-016t
Figure 13a. Dimensionless zero-order torque, T, (or Figure 13b. Dimensionless third-zero torque, Ty, as
Tyy) as a function of the orientation angle 8 for an a function of the orientation angle 6 for an ellipsoid
ellipsoid rotating with angular velocity w,e, (or wye,): rotating with angular velocity w,e,: ~—-, case I, ——,
———, case I, ——, case II; -- x --, case III. case II; -- x --, case IIL.
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Figure 14a. Dimensionless zero-order torque, Ty, as
a function of the orientation angle 6 for an ellipsoid
rotating with angular velocity wye;: ——, case I; ——,
case II; -- x --, case IIL.
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Figure 14b. Dimensionless third-order torque, Tj,,,

as a function of the orientation angle § for an

ellipsoid rotating with angular velocity wiye;: ———,
case I; ——, case IL; -- x --, case III.

Figure 15. Dimensionless third-order torque, Ty, as a function of the orientation angle @ for an
ellipsoid rotating with angular velocity w,e,; ——, case I; ——, case II; -- x --, case III.
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1 [! 1 [
AJ‘_‘Q f,fjdp, Ay = ‘é;f_lfjfkdp.

.
Ay = T6rn J_[ﬁék ¢ dp etc., ’ [82]

where ¢, &, and ¢, are coordinates of points on the body axis and p is the distance
measured along the centreline from the centre, O, of the body. It is worth noting however,
that [82] can not be exactly satisfied up to and higher than the third .order in the
slenderness ratio, ¢, without requiring the distribution of higher-order singularities (e.g.
potential dipoles, doublets etc.) on the body axis; € is defined as

e =In (2—1>—I
= R)

where R, is the maximum effective radius of the body.

For illustration purposes, we now calculate the force and torque experienced by an
arbitrarily-oriented slender circular cylindrical body when the body is moving normal to
the interface with speed U,. The coordinate system, (x;, X, x;) is chosen such that the body
axis lies entirely in the x,—x; plane (i.e. £, = 0) and makes an angle 6 with the x;-axis, as
shown in figure 16. In this system, the body centre, O, has coordinates (0, 0, d). We choose
! and U, as the characteristic length and speed, respectively, with respect to which other
lengths and velocities are non-dimensionalized. Also K =1/d.

For this slender body, an approximate solution of [81] is (Batchelor 1970)

£i=0, [83]
fi=—2cosfsinfe [[l - %e{ln[l - (;)2:] + 3} + 0(52):“ [84]
and
) 7] 3sin?6 — I
fi= ~2(1 + cos? )¢ [1 ——%e{ln[l - <$> ]+2—(§;‘2—9_—1)}+ 0(52)], [85]
Also,
A, = —1cos 0 sinBe[l —e(In2 + 1) + O(e?)], (86]
8
¥4 R

Figure 16. A sketch of the coordinate system and the position of the slender circular cylindrical
body.
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: 3sin*6 — 1
Ay = —1(1 + sin? _ gy o=t 2
3 3(1 + sin 0)6{1 e[ln2 1+ T 1)] +O(e )}. [87)
Csy = 4, [88]
Cyu=Cy=4, [89]
and

. 3costf—1

Cyp = —3(1 + cos? 9)6{1 -el:an -1 +m] +O(ez)} ) [90]

The non-zero components of the dimensional force, F, and torque, T}, which the body
experiences may be deduced from [42] and [43] to be

F, =8mu' Ul (4, + K (A3 P3Cyy + Ay P Cry) + O(€3, K2)), [91]
Fy=8nu'Uyd [A; + K (A3 Py;Cy3 + Ay Py, Cy) + O(€3, K )] [92)
and
T, = 8ruUyPK*{ 43Py (Do — Diysy) + Prgy(Dyzyy — Do)
+ A3[Ppy(Dyyys — D) + Py (Dagyy — D) + O(3, K3}, [93]

In [93],
(D2233 — Dyy3y) — 2(Ds3p3 — Diyyyy) =cos O sin G ¢ [1+e®-2m2) [94]
Dayy3 — Dy = —3cos? e[l + e (& — 21n 2)] [95]
and
Dyp; — Dypyy = 5sin? B e[1 + € (3 —21n 2)). [96]

It should be pointed out that the non-zero components of 4;, C; and Dy, (i,j, k,! =2,3)
have leading terms of order . Consequently, remainder terms of order K"(n = 1,2,...) in
[91]93] actually have leading terms of order ¢" as factors. Therefore, [91]-{93] are valid
to the stated order in ¢ alone, even when K(=1//d) is of the order of unity.

The computed values of —F,/(nu'leU,), —F,/(nu'leU,) and —T,/(nu'l’c?U;) are
tabulated as functions of 8 for A=0, A=1 and A = o and for K =0.5, K =0.8 and
K =(1.01)"" in table 3. All the tabulations are for ¢ =0.1887. Agreement with the
corresponding results of Yang & Leal (1983) is excellent.
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